F EDERAL
STUDENT AID

1‘(?1{’ IIL’!’P PM! jlﬂl"(_’l'.;fﬂ' T;TP{.TH‘L}J"]' SL’II”(.J!

EAI Implementation Workshop
Part 2

14 May, 2002
1:30-4:00 PM

Room 221 BC

Dial-In: (877) 714-4281
Meeting ID: 4057

B FEDERAL
STUDENT AID

S EE i Agenda

Part I: Overview of EAI & Intro To EAI Concepts

Overview of EAI
Intro to EAI Concepts

Break

Part Il: Products & Architecture

Products
Overview of the EAIl Architecture

Questions & Answers

EAI Implementation Workshop Part 2—May 14, 2002 1

QA FEDERAL
STUDENT AID

Part 2: Products & EAI Architecture

Products

-Overview
-MQSeries

-AMI

-MQSI

-Data Integrator

Examples

Questions & Answers

EAI Implementation Workshop Part 2—May 14, 2002

=i
¥ FEDERAL
§ STUDENT AID

The EAI Core Team installs, configures and

administers selected EAI

products.

Product/Tool Description

MQSeries Transport of messages between systems

MQSI Transformation and formatting of messages
between systems

Data Large amount of data transportation

Integrator

Adapters Enables program interfaces from MQSeries to
application.

AMI Simplified messaging API for business application
programs.

EAI Implementation Workshop Part 2—May 14, 2002 3

Products-Overview

I FEDERAL
§ STUDENT AID

-

MQ - Before

Before messaging

Application Application

A / >
IPC

Application \ Application

- \ / ;
IPC

Application / Application

C F

EAI Implementation Workshop Part 2—May 14, 2002 4 Products-MQSeries

FEDERAL
STUDENT AID

Wi Hadp Puet Amverica Through Sl

MQ-Before Messaging Notes

= The days of stand-alone business applications are pretty much over. Nowadays
applications are merely a piece of the solution which must be able to communicate both
upstream and downstream with partner applications. These partner applications are
often written by different development organisations and are located across the
enterprise or even in other enterprises. The traditional approach of writing a TCP/IP
application is just too complicated in modern business architectures. An application
writer must concern himself with

= Network topology/machine addresses
» Data representation and formats
» Application availability and maintainance schedules
» Complicated network programming
- Particularly if communicating with more than one partner.
» Guaranteed delivery
- \Writing two-phase commit protocols and handling indoubt situations

= Most, if not all, of these concerns can be removed by a messaging backbone.

EAI Implementation Workshop Part 2—May 14, 2002 5 Products-MQSeries

MQ Messaging

With Websphere MQ

F 3 r N

Application QM1 QM2 Application
A D

. -

Appli;atlan &EHLE TRANSPORT g.g%.é T , Appli;ation
SERVICE '\J

" e

Application Application
C F

EAI Implementation Workshop Part 2—May 14, 2002 6 Products-MQSeries

With MQ Notes

» The introduction of Websphere MQ vastly simplifies the work the application need do. An

application now only needs to put a message to the correct queue and let MQSeries worry
about how to deliver the message across any network. The messaging paradigm, similar

to in and out trays, lends itself to the concepts of being one part in a chain of business
Processes.

" Application development is simplified. Often an application can be fully developed on a
single machine without any communications and then deployed across the network

without any changes.

» Management of the messaging network, the location of the servers etc is now part of the
MQSeries configuration and not part of the application leading to simpler more reliable,
flexible designs.

EAI Implementation Workshop Part 2—May 14, 2002 7 Products-MQSeries

MQ - Overall

Time Independence Platform Independence
Location Transparency Many-to-Many Connectivity

EAI Implementation Workshop Part 2—May 14, 2002 8 Products-MQSeries

: EDERAL
_. s TUDENT AID

!

MQ - Overall Model Notes

= MQSeries Messaging has a number of architectural goals

» Time independence
»Location Transparency

» Platform Independence

» Many-to-Many Connectivity

= The purpose of this presentation is to show how these goals are achieved
when going across networks of Queue Managers.
We can even add a couple of new goals

» Protocol independence (TCP/IP, SNA etc)
» Application unaware

EAI Implementation Workshop Part 2—May 14, 2002 9 Products-MQSeries

Y FEDERAL
STUDENT AID

4 Wi Hulp Pt Amveriva Through S

Messaging Fundamentals?

A single, multi-platform API
= Easy to use ... message centric interface
+ Network independent

... faster application development

Assured message delivery

Loosely-coupled applications
- FES]I'HE’IFDHDUS messaging -.-"'""-F."

EAI Implementation Workshop Part 2—May 14, 2002 10 Products-MQSeries

Reducing Complexity

Reliable, distributed computing
» Complex
» Error prone

MQSeries eases the complexity

MQSeries is not a substitute for:

= Well written applications
+ Robust network
» Good operational procedures

= Well managed system

EAIl Implementation Workshop Part 2—May 14, 2002 11 Products-MQSeries

s TUDENT AID

Wi Halp Pt Amverica T1

Availability Choices

Everything

Constantly

. - Available
Everything
Conditionally
Available

1[?» ~
P wyire -

it e
Mot : Available
Available -
e Message/Queuing
Not Environment
Available ! A

EAI Implementation Workshop Part 2—May 14, 2002 12 Products-MQSeries

TUDENT AID

T Hlalp Pt Amverica Through Scho

What is a message?

What's a Message?

Message = Header + User Data

User Data

A Series of Message Attributes
Understood and augmented by the
Queue Manager

= Unique Message Id
—Correlation Id

= Routing information

— Reply routing information

- Message priority

—Message codepage/encoding
- Message format

e

EAIl Implementation Workshop Part 2—May 14, 2002

Any sequence of bytes

- Private to the sending and receiving
programs

= Not meaningful to the Queue
Manager

Message Types
s Persistent ... recoverable
+* Non Persistent

Up to 100MB message length

13 Products-MQSeries

What's a Queue?

Place to hold messages

Queue creation
¢« Pre-defined

+ Dynamic definition

Message Access
s FIFO
» Priority
* Direct
» Destructive & non-destructive access

Parallel access by applications
* Managed by the queue manager

EAIl Implementation Workshop Part 2—May 14, 2002 14 Products-MQSeries

: EDERAL
_. TUDENT AID

!

A Queue manager is made of 3 components

A queue manager may - generally - be thought of as 3 components:

+ The Kemelis the part of the queue manager that understands how toimplement the MQSeries APIs. Given that the
APIs are common across the quee manager family, it stands to reason that the Kemel is mostly common code
across the set of queue managers. (The primary exception to this is the OS/390 queue manager where the same
functions are implemented differently to support the same APls).

+ The Local queuing component is the part of the queue manager responsible for interacting with the local operating
system. It manages memory, the file system and any operating system primifives such as timers, signals, etc.
This component insulates the Kemel from any considerations of how the underlying operating system provides
services and so enables the Kemel to be operafing system independent

+ The Message Moving component is responsible for interacting with other queue managers and with MQI clients.
For environments where all of the message queuing activity is local to a system then this component is unused -
though this is a very rare case.

The message moving functions are provided by specialised MQSeries applications, called Message Channel

Agents.

EAI Implementation Workshop Part 2—May 14, 2002 15 Products-MQSeries

QA FEDERAL
STUDENT AID

What is a Queue Manager?

0
o
—
Q)
4]
—

= Utilities ™

- Command Ser
_istener

Channel Initiator

MQ API

. Windows Explorer,,

Kernel

Local

/// Mhisﬁgge /H\ Queuing
ST

EAI Implementation Workshop Part 2—May 14, 2002 16 Products-MQSeries

| STUDENT AID

Channel Concepts

QM1

Jali

Transmissian
Queue

am2

MCA

Message Flow

L IMCA \-

Channels

N

Application

Message Flow

“MCAI

Qs

MCA __._—I_r

Queue

J

Channels are uni-directional

Channels provide for (application) session concentration
Two-way communication requires two channels

EAIl Implementation Workshop Part 2—May 14, 2002

17

-

Appicaion
QueLE

TramemiEsion

Products-MQSeries

Y FEDERAL
| STUDENT AID

v Hlalp Pt Amveriva Through S

Channel Concepts Notes

Channels are used by MQSeries Queue Managers in order to exchange messages between Queue Manager
implementations. This chart illustrates the various components that are required for an assured message

delivery mechanism.

» When an MQ application opens a queue, it is necessary to have a queue name resolution process
which will enable the appropriate destination to be targeted. In this case, the target destination is a
remote queue - which resolves to a local transmission queue

» There must be a local mechanism for safe storage of messages until they can be passed to the target
Queue Manager and queue. This is the transmission queue. This queue is the same as any local
queue - with the exception that the usage of the queue is designated as 'xmitq'. Note that
transmission queue is often abbreviated to xmitg. Note that ALL messages destined for a remote
Queue Manager must pass through a Transmission Queue.

» There must be a process that is responsible for taking messages from the transmission queue and
passing them to the remote Queue Manager using some underlying (provided) transport system.
This process is called the sending Message Channel Agent (MCA).

» There must be a process that is responsible for receiving messages and placing them onto target
queues. This process is known as the receiving MCA.

A sending and receiving MCA pair - and the underlying transport are known as an MQSeries channel. There is
a transport independent protocol defined for MCAs to facilitate the once-only, assured delivery of messages.

EAIl Implementation Workshop Part 2—May 14, 2002 18 Products-MQSeries

AFEDERAL
_. STUDENT AID

b Pk A

Channel Definitions

QM1

DEF CHL(TO.QM1) CHLTYPE(RCVR)

DEF QL(QM2) USAGE(XMITQ)

DEF CHL(TO.QM2) CHLYPE(SDR) TRPTYPE(TCP) CONNAME({QM2 HURSLEY) XMITQ(QM2)

 d iy i oy

QM1 QM2
f”_—*“tc| |:- ‘MEA Channel: TO.QM2 o . ‘|_|—
%.ﬁﬁ.m Message Flow - —
Cueue D2 QFEE'W
il
L o0 Channel: TO.QM1
icati MCA MCA
St LF-L/;,[= []‘k
gz CE1

Qam2

DEF CHL(TO.QM2) CHLTYPE(RCVR)
DEF QL{QM1) USAGE(XMITQ)

DEF CHL(TO.QM1) CHLYPE(SDR) TRPTYPE(TCP) CONNAME{QM1.HURSLEY) XMITQ{QM1}

EAI Implementation Workshop Part 2—May 14, 2002 19 Products-MQSeries

Channel Format and Protocol

Once/once-only message delivery

Resynchronisation process for failed channel

A channel is a one-way conduit between 2 Queue Managers. It provides a single pipe (session) through which all
messages bound for a particular partner Queue Manager may be sent. This is in contrast to some mechanisms
which require a pipe (session) per application. Because the channel is a one-way mechanism, MQSeries
messages may flow in one direction enly. If two directional flow is required between Queue Managers then two
channels are required.

Further, it is important to understand that although message flow for a channel is uni-directional, there are control

packets flowing in both directions. Messages are not required to be passed directly to their target queue. It is quite
acceptable for a message to be passed through one {or many) intermediate Queue Managers before reaching the
final destination. This is simply achieved by defining appropriate transmission queues on the intermediate Queue

managers.

The receiving message channel agent will place messages destined for remote Queue Managers onto these
transmission queues. The method by which this is accomplished is explained later. This method of passing
messages is usually known as multi-hop.

It is therefore possible to construct any topology of interconnected Queue Managers. Perhaps the most popular

forms being :-
‘any-to-any' where every Queue Manager is directly connected to every other Queue Manager
‘hub' where a central Queue Managers routes messages to other Queue Manager.

Three-tier networks where MQI applications connect in to one of the leaf node Queue Managers via the client
facility are also very popular.

EAIl Implementation Workshop Part 2—May 14, 2002 20 Products-MQSeries

TUDENT AID . .
e ot e T i MQSeries Messaging Platforms

EAI Implementation Workshop Part 2—May 14, 2002 21 Products-MQSeries

Examples

‘Fire and Forget'

Put Invoice-C : Get a
Program wﬁ?—:"‘ Invoice-Q
Ii_'.' 2

Program
B

Inwcbea-C

Request/Response

-
]

| Program
B

EAIl Implementation Workshop Part 2—May 14, 2002 22 Products-MQSeries

TUDENT AID

W Fik Bt et Thinericth Bebrad Exam p I eS

Loop

EAIl Implementation Workshop Part 2—May 14, 2002 23 Products-MQSeries

DENT AID

MQSeries Publish / Subscribe

" Subscription

/ (re-) Publication

EAI Implementation Workshop Part 2—May 14, 2002 24 Products-MQSeries

Bus — MQSeries Integrator Pub/Sub

.|
——]

Application A
Publisher
{Publishes messages that contain ABC In the message)

=4
el

o] o H o o

- - i)
— i} | —=

Application B Applcation C Application O Application E
Subscirber Subscirber Subacirber Subscirber
(Mags that contain ABC) (Megs that contain ABC) {M=zgs that contain XY.Z) (Mage that contain Y}
e Key Points

» Based on MQSeries base as well as the MQSeries Integrator products thus
deriving the MQSeries base and MQSI products’ strengths
e Takes administration of application to application communication out of the
applications realm and into the administrative domain
e Centrally administered
EAI Implementation Workshop Part 2—May 14, 2002 25 Products-MQSeries

i\ F EDERAL
| STUDENT AID

Queue Manager Clusters

Q Mgr 1
B
I,.--*"'H. Q Mgr 2

B

e ueue 1

EAIl Implementation Workshop Part 2—May 14, 2002 26

QMgr3

UEL.IE 1

Q Mar 4

N %h.q.-.UEUE 1

Products-MQSeries

Y FEDERAL
STUDENT AID

4 Wi Hlp Pt Awverive Through 5

Pub/Sub & Clusters Notes

The final example given here (though not the last possibilitiy by any means) is MQSeries and publish/subscribe.
In this environment, the receiving applications notify an intermediate broker of their interest in particular sets of
information...in this context a receiving (or subscribing) application provides a subject and a queue where
messages matching this subject may be delivered. When sending (publishing) applications generate information
they also provide an associated subject and the broker provides a matching service enabling only the appropriate
subscribing applications to receive the information. Note that the publish/subscribe model provides for the situation
where a message may be published by an application on & subject which has no subcribers. In this instance the
message data is discarded.

There are many publish/subscribe products available in the marketplace today. MQSeries publish/subscribe
differentiates itself by providing support for the publish/subscribe model and combining it with the exactly once
delivery model of MQSeries message/queuing.

In order fo enable highly scalable applications, MQSeries queue managers provide support for MQSeries
Clusters. In this environment, there are several copies (or clones) of a particular target queue and each message
is sent to exactly one of the possible choices. MQSeries Cluster support also defines and manages all MQSeries

resources autormatically and provides automatic notification of falled or new quetie managers in the environment

EAIl Implementation Workshop Part 2—May 14, 2002 27 Products-MQSeries

TUDENT AID

Wi Hulp Pt Amveriva Through S

Examples: Notes

These examples illustrate some of the ways in which MQSenes queues can be used and, thereby, lllustrates
some of the styles of applications that may benefit from the use of a message/queuing model.

& The fire and forget style of cperation is cnewhere there iz no (direct) response required to a message.
The messageiqueuing layer will guaraniee the arrival of the data withouth the application having to
solicit a response from the receiver.

a The request/response style is typical of many existing synchronous appications whers some responsa
is required to the data sent. This style of cperation works just as well in an asynchronous environment as
in a synchronous ocne. One difference s that - in this case - the sender does nol have to wait for a
response immeditely. It could pick up the response at some later time in i's processing. Although this is
also possible with the synchronous style, it is less common.

a [Oata does not have to be returned to the oniginating application. t may be appropriate to pass a
response to some other appication for processing, as illustrated in a chain of applications.

= There may be multiple applications mvolved in the processing before a response comes back o the
originating application, giving a leop of applications.

These vanous modes of interaction may be arbitarily combined to provide as complex/sophisticated a topology
as is necessary 1o support a particular application. The koosley coupled nature of the message queuing mode
makes it ideal for this style of interaction. Further, @ makes it straightforward to develop applications in an
iterative style.

In order to enable highly scalable applications, MQSenes queues managers provide support for MQSeries
Clusters. In this environment, there are several copies (or clones) of a particular target gueue and each
message is sent to exacty one of the possible choices. MQSernies Chuster support also defines and manages
all MO Series resources automatically and provides automatic notification of failed or new queue managers in
the emdrcnment.

EAIl Implementation Workshop Part 2—May 14, 2002 28 Products-MQSeries

STUDENT AID

W Halp Pt Amverica Through Sches

Triggering

Triggering

Queue Manager

& Application o Program B
Program A .
-fe=re)
MQPUT A-Q

MQGET I-Q

Initiation
Queue

Trigger Monitor

Triggering allows
& Instantiation as required
Conservation of system resources
&« Automation of flow

EAI Implementation Workshop Part 2—May 14, 2002 29 Products-MQSeries

Triggering Nodes

The time-independent nature of message queuing means that applications may be idle during perods when there
are no messages to process. To avoid having processes consuming systemrasources while there is nowork to do,
MQSeries provides a mechanism to trigger’ applications to start - when certain conditions are met.

Triggering works by defining a condition for an application queue which, when met, causes the queue manager to
send a trigger message to an initiation gqueue. The trigger message is a fixed-format message which contains
information about the application queue that caused the trigger message to be generated and the application
which should be started to process messages. Trigger messages are processed by a Trigger Monitor which
(usually) runs continuously. The Tngger Monitor starts the appropriate application to process the message(s) on
the application queue.

Trigger conditions can be based on queue depth, for all messages or for messages above a certain pricrity. Or a
trigger message could be generated for every message or just for the first message on a queue. Further, a
minimum time interval may be specified between frigger events which avoids any issues with duplicate triggering.

By using a Trigger Monitor it is possible to have a single process which initiates many application processes to
handle messages arriving on one or many gueues as required.

MQSeries provides basic Trigger Monitors for many environments. However, because of the diversity of
environments, it may be necessary to implement a User-written Trigger Monitor. The triggering process is entirely
exposed and documented, in order to make this possible.

Triggering is not the only mechanism available to start applications - and it is not always the most
appropriate solution. But, is is one option to be considered.

EAIl Implementation Workshop Part 2—May 14, 2002 30 Products-MQSeries

§ STUDENT AID :
ST vy m———— MQSeries Interfaces

\pp" Messaging Interface
- High level of abstraction
- Defines messaging "how' and
1whml
- G, C++, Java, COBOL

Java Message Service

- Emerging Java standard

- Abstracts MQSeries specific
- Java only

Original MQSeries API

Common Message Interface - Continued support
- Construction and analysis of - 390 Assembler, C, C++, COBOL,
messages using logical view COM, LotusScript, Java, PL/,
- Supports XML, COBOL copybook, VisualBasic
C header

- Usable with AMI, JMS, MQI
- Not yet available

EAI Implementation Workshop Part 2—May 14, 2002 31 Products-AMI

AMI Objectives

= Simplified messaging API for business application programs
m Explicit split between roles
» Application Programming
» Administration
® Framework for application extensions
» Error handling, audit trail, ...
= Simple inter-operation with message brokers

» MQSeries Pub/Sub Broker
»MQSeries Integrator V1/V2

= Message transport API...
»NOT message content (CMI)
» NOT message broker API

EAI Implementation Workshop Part 2—May 14, 2002 32 Products-AMI

| STUDENT AID

Wi Hulp Piek Amverics Through Schoo!

Philosophy

= Simplified interface
= Fewer structures, more verbs with single function

= Message handling/transport behaviour options moved from
program to administration domain (policies)

m Separate calls for different application styles

Send and Forget

Request/Response

Request/Reply

File Transfer

m Natural style for each language, C, C++, Java

EAI Implementation Workshop Part 2—May 14, 2002 33

Products-AMI

Y FEDERAL
STUDENT AID

4 Wi Hlp Pt Awverive Through 5

AMI Concepts

amSend(,PolicyName,Message,...)

- The "Where"
» Defined in repository
» Abstraction of an MQSeries Queue or collection of Queues
= Policy - The "How"
» Defined in repository

»Defines quality of service e.g. priority, persistence, confirmation level
etc.

» Defines how to handle message e.g. error handling, retries, expiry
handling,...

m Message - The "What"
» Message data and attributes (format, correlid,...)

EAI Implementation Workshop Part 2—May 14, 2002 34 Products-AMI

AMI Procedure Style Calls

m Setup m Request/Response
»aminitialize() » amReceiveRequest()
»amTerminate() » amSendResponse()

= Datagram » Publish/Subscribe
»amSendMsg() » amPublish()

» amReceiveMsg() » amReceivePublication()
| Requesﬂﬂeply b—amSubsﬂribef_}

» amSendRequest() » amUnsubscribe()

» amReceiveMsg() = File Transfer

» amSendFile()
» amReceiveFile()

EAI Implementation Workshop Part 2—May 14, 2002 35 Products-AMI

AMI Object Style Calls

= Grouped by "Object Type"

> Session:
= Policy:

» Message:
» Sender:
» Receiver:

» DistributionList:

» Publisher:
» Subscriber:

EAI Implementation Workshop Part 2—May 14, 2002

amSesXXX()
amPolXXXX()

amPubXXX()
amSubXXX()

36

[Service]
[Service]
[Service]
[Service]
[Service]

Products-AMI

s F ED ERAL
g STUDENT AID

Wi Hlp Pt Awverive Through 5

AMI APl Examples

= Simple send and forget for C (Procedure style)

hSession = amInitialize (SESSION HNAME, NULL,
&compCode , &reason) ;
amSendMsg (hSession, SENDER NAME,
NULL, /* Default Policy #*/
23, /* Message length #*/
"My message to the world",
NULL, /+* Default Send Message */
&complode, &reasocon};

amTerminate {hSession, NULL, &compCode, &reason);

EAI Implementation Workshop Part 2—May 14, 2002 37 Products-AMI

a FEDERAL
§ STUDENT AID

Wi Hulp Pt Amveriva Through S

AMI APl Examples

m Simple send and forget for C (Object style)

hSession = amSesCreate (SESSION NAME, &compCode, &reason) ;

hSender = amSesCreateSender {hSession,SENDER NAME,
tcompCode, &reason);

hMsg = amSesCreateMessage (hSession,SENDER NAME,
tcompCode, &reason);

amSesOpen (hSession, AMH NULL HANDLE, &compCode, &reason} ;
amSndOpen (hSender , AMH NULL HANDLE, &compCode, &reascon} ;
amSndSend (hSender, AMH NULL HANDLE,AMH NULL HANDLE,

AMH NULL HANDLE, 23,

"My Message to the world",

hMsg, &compCode, &reason);

EAI Implementation Workshop Part 2—May 14, 2002 38 Products-AMI

AMI APl Examples

= Simple send and forget for Java

mySessionFactory = new AmSessionFactory(};

mySession = mySessionFactory.createSession(SESSION NAME) ;
myPolicy = mySession.createPolicy(POLICY HNAME) ;

mySender mySession.createSender (SENDER HARME) ;
mySendMSG = mySession.createMessage (MESSAGE NAME]) ;

String hello = new String("My message toc the world");
mySendMSG.writeBytes (hello.getBytes()) ;

mySender. send (mySendMSG, myPolicy) ;

EAIl Implementation Workshop Part 2—May 14, 2002 39

Products-AMI

DENT AID

v Halp Puet America Through Sche

AMI Objects

= Session
= Creates and manages all other objects
- Owns the connection object

= Provides the scope for a unit-of-work

= Connection

= Establishes message transport (MQSeries) connection
—Defined in AMI tool

= Not directly visible to an application

EAI Implementation Workshop Part 2—May 14, 2002 40 Products-AMI

FEDERAL
STUDENT AID

W Halp Pt Amverica Through Sches

AMI Objects

= Message

—=Encapsulates the message attributes (priority etc.)

—Optionally stores the message data (if not passed in an
application buffer)

= Policy

—Encapsulates options for open(), close(), send(), receive(),
publish(), subscribe() etc.

- Can be defined in repository, built-in or default definition

= Service

—Encapsulates one (or in the case of a distribution list more
than one) MQOD structure that references a local or non-local
MQSeries Queue

EAIl Implementation Workshop Part 2—May 14, 2002 41

Products-AMI

TUDENT AID

b s AMI Repository

= Optional (AMI can work with or without repository)

= Can define:
- Policy

» Connection: name, type: real/logical, mode: auto/client/server

= Service Points

- Services
» Distribution List*
» Publisher
» Subscriber

* a Distribution List requires a repository definition (defaults exists for other
types)

EAI Implementation Workshop Part 2—May 14, 2002 42 Products-AMI

DENT AID

v Halp Puet America Through Sche

AMI Built-In Policy Behavior

= Pre-defined behaviour by using a particular policy
= Cuts down on application code

= For example, poison message handling

-When backout-limit is exceeded, poison message is requeued

to backout-requeue Queue and MORC BACKOUT LIMIT ERR
returned

- If requeue fails, message is returned to application with
MQRC_BACKOUT_REQUEUE_ERR

- If message is part of group, no attempt is made to requeue
and MQRC_GROUP_BACKOUT_LIMIT_ERR is returned

EAI Implementation Workshop Part 2—May 14, 2002 43 Products-AMI

| STUDENT AID

i Halp Pt Amverica Through 5

AMI Repository

= Build Time
» Java based GUI tool
= NT Only
» Produces XML repository file

= Run Time
» AMI reads XML repository file
» Each application can have a different XML file

= Use of environment variable AMT REPOSITORY for C

—Use of setRepository() method in C++/Java
= XML files can be shared using standard file sharing

EAI Implementation Workshop Part 2—May 14, 2002 44 Products-AMI

FEDERAL
STUDENT AID

T AMI Administration Tool

W Hulp Pt Amverice Throug

Py | T oalkit - Tecetomd
Cle TAE WEw Caaead Swoadme e 7 _
o1 i o
Dy &= Wy 3 By By
Flews Iip=q Gaes Sl Copy =ibh
Allbe 3ais |
WH | Se- | O ke | 2 Srline C |
0] Gemdezs | ubahzz: c]! viere-al SUnC Ha-:eu'sl |'J|J|I'S-|'|I Suts: 1I:e| ZEse 1|:-h-:-n|
VO =) Serdee Falats el == 3k .
= 1 ders e B =
SE Cogrammon LosnE| seer S mmm v - s]
i m] Suks - 1hars “nero a3 15p0n =
i t-lEH -uE s L ; =
e erz ztance: = -
=} =] Pulivivs i A3 TrEaEpar b |
E---E:} S lerfine She Lot Unlir- zad
: I L
Sy Inir s 1330
TERANNES SRl wTEaArr) L]
S alian Acliun. e ad -
=eadi Lata: ~za00 |-
e Sl Carerdle - A o ==
1] | Ladate
¥ i

EAI Implementation Workshop Part 2—May 14, 2002 45 Products-AMI

i\ F EDERAL
| STUDENT AID

Application Integration

Creating an Application Integrator

v Join Applications &
Information sources

v Heterogeneous &
decoupled

v Data transform

v Data routing

v DBMS Integration

¥ Transactional

v [ooling

v Simple
v Extensible
v Standards based

® Transformation
u Business Rules
m |ntelligent Routing

EAI Implementation Workshop Part 2—May 14, 2002 46 Products-MQSI

FEDERAL
STUDENT AID

r Hulp Pt Awveriva T

MQSI Architecture

Message Flow
Message Formats
Man ayjement

Adrmin Appl I
4 Security

Subsystem

Broker ; ¥

sz il Adrministrative
: Client
Client T 5 fessage Flow Enginels) et Appl
Appl W
| el i
[|
SoUrce MQ Messages .
. X arget

T
T T
¥ T
” =
- ' |
P g v v
ot . v f)

- 3 ¢

= :

4 CMI : CMI

.rf - 4

- il s

Aharehouse

Alter Mods ‘,:,,_q:,_t
rehosi ng Mode Heee),

Message
Dictionary

EAI Implementation Workshop Part 2—May 14, 2002 47 Products-MQSI

B FEDERAL
._ STUDENT AID

MQSI v2

Message Flow Components

+ Amessage Flow is
- Asequence of operations on a message

- Dependent on message content and current message flowactions
= Stateless across successive inputs

- Constructed using visual "wiring" tool from Process Nodes

+ Amessage flow is com posed of
— Built-in IBM supplied processing nodes
- 3rd party "plug-in" processing nodes
» Defined interface for processing nodes

- Process nodes which are previously defined message flows
» Allowes building compound message flows

+ Message Flows can be thought of as "Business Services"

..‘

== e
5 {[ﬂ%i_

e o

EAI Implementation Workshop Part 2—May 14, 2002 48 Products-MQSI

L]

MQSI: Message Flows

Failure

=
_I-

Server Application 1

g e g.]]]
_ofEl D.g@:éa
3

Transfom
Senver Application 2

EAI Implementation Workshop Part 2—May 14, 2002 49 Products-MQSI

FEDERAL
STUDENT AID

olp Pied Awverive Tl

MQSI: Nodes

Message Processing Nodes

output connectors
/i
__.r"'f ___;’
failure / f e e g
r
| _;':r ‘
f d
! /
. out 4 i /%
4 _ ' ; Action / /
7 input terminal
_."l-: .":.) II|I:
output terminal Lo
input output
message message
tree trees

EAIl Implementation Workshop Part 2—May 14, 2002 50

Products-MQSI

MQSI: Generic Flow

A Simple Message Flow

MQGE

QutTerminal

MQinput | je MQPUT

InTerminal MQOutput

EAI Implementation Workshop Part 2—May 14, 2002 51 Products-MQSI

QA FEDERAL
s TUDENT AID

MQSI: Terminals

Each node has one input terminal and one or more output

terminals
Failure
Failure _—
.E/ Out o| ¥ Unknown
il . Catch Filters False
nputl True

EAI Implementation Workshop Part 2—May 14, 2002 52 Products-MQSI

MQSI: Msg Flow Node

Message Flow Nodes...

Usually customized using SQL
e Filter, Extract & Compute for message manipulation
e Database interaction
¢ Content-based filtering for subscriptions

® Based on SQL3 standard
» SET OutputRoot. MQMD.Userldentifier = Jill’;

» INSERT INTO output SELECT * FROM input WHERE
filter_expression;

» DECLARE | INTEGER,
weEl =1,
WHILE | < CARDINALITY (InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*|l];
SET [=1+1;
END WHILE;

» SELECT SUM
(CAST(I.PRICE AS DECIMAL) * CAST(I.QUANTITY AS
INTEGER)) FROM Body.Invoice.ltem[] AS |) = 100;

EAI Implementation Workshop Part 2—May 14, 2002 53 Products-MQSI

FEDERAL
§ STUDENT ALD

MQSI: Node Properties

V.l ESRY.RPC.SIEBEL.MOSI .5 N ¥’ ESRY.RPC.SIEBEL.MOSI =
ESRY.RPC.SIEBELMQSI | Basic | Default| Advanced | Description |

Defaultl Advancedl Deacriptinnl

Node type [i1Cnput Queue Name [ESRY RPC.SIEBELMQSI

F.§ ESRY.RPC.SIEBEL.MQSI x|

K.§ ESRY.RPC.SIEBEL.MQSI x| ESRVRPC.SIEBELM@SI| Basic| Defautt | Advanced | Description|
| advanced | Description | [t e Tes =

Message Domain fomL K| E;d‘_ar Mode Default |
Message Set Sdiine I
WMessage Type All Messages Availahle '
Message Format Match Message 1D C
Topic Match Correlation 1D '

Convart '

Convert Encodirg

Convert Coded Character SetiD g

Commit By Message Group '

alicate '

(8] 4 Cancel By | Help |
8] 34 Cancel Aty Help

EAI Implementation Workshop Part 2—May 14, 2002 54 Products-MQSI

MQSI: Primitive Nodes

; Aggregate
_ 1<a(Aggreg
%—’E Compute i FI.:thabase B control
MQelnput |§3 Extract |g| Datalnsert :;:I Aggregate
ResetConent P DataDelate 4—%IReply
ESCADAInput DeacHtore o) po
ﬁ Warehouse Control
Y < [T :
->. MQOutput QS|R_L'I GETelakal 3 NEONRulesEvaluation
MQReply uﬂ Label .. NEONFormatter
= B NEONTransform
“& |Publication Ethrow)
Emnegutput = |Trycatch B|NEONRules
@SCADMMM |E}* [FlowOrder ﬂuﬁomﬂap
gﬂutpuﬁerminal # il
iy iR
race S User/Third Party

Products-MQSI

EAIl Implementation Workshop Part 2—May 14, 2002 55

T

2 FEDERAL
§ STUDENT AID

MQSI: Nodes

Many "built-in" processing nodes

¢ Check - Message format checking

o CompLte - CompLtation based on message fields and/or
database lookup

¢ Database - Database update and interaction

¢ Filter - Filter based onmessage cortent and/or database lookup

¢ pass-through - Simple pass through element

¢ SUbscription - Dynamic subscription management

o Throw - Generate exception

¢ Trace - Message trace logging element

¢ [ryCatch - Bxceptiontrapping mechanism

+ Y\arehouse - Storage of message to warehouse including schema
definttion (specialization of Database)

o MNeon rules/format - Eguivalent function to MG Series Integrator V1.

¢ MNeon transform - Permits transform between message formats held in

Meon message repositony

Support for vendor "plug+dn” nodes

Graphical construction tools
o [ntegrated developrent / deployrent / managerent tools

Product ships with "pre-configured” message flows
Basic publish/subscribe capability

EAI Implementation Workshop Part 2—May 14, 2002 56 Products-MQSI

FEDERAL
STUDENT AID

MQSI: Message Set

:i MO5Series Integrator Control Center - stacey.xml

File Edit “iew Message Sets PMNeon Help
- |
b = E!fj B O

hMessage Sets | Message Flows I Assighments I ey l L M es%. e %ts COntaI n :
i | | Message Sets | E'_'1 g .
ﬁ LME =

Eluuq]...%ﬂcateguriEs * E I em en t S

------ E3| Elerment Qualifiers

=g Elements . .

1 [E] EDA_AcctType STRING ® Types Sl mple
E| EDA_BankAcctMumber STRIMNG
~[E] EDA_BillingCycle STRIMG C d
E| EDA_CurrentEDAStatus STRIMG Om poun
~[E] EDA_LasthSFDate STRING
EEDA_LastNSFReaSDn STRIMG L th
[E] EDA_MSFCount STRING ¢ eng S
[E] EDA_Paytmount STRIMG .
~[E] EDA_PayEfiDate STRIMNG o V I d V |
--E| EDA_Priordccthumber STRIMG a I a ueS
--E| EDA_PriordcciType STRIMG
-[E EDA_PriorRoutinahumber STRING ® M essages
--E| EDA_RouingMumber STRIMG
-[E] EDA_StartDate STRING
-[E] EDA_StatusEfiDate STRING
--E| ESRY_ErrorCode STRIMG
[E] ESRY_Errorsy STRIMG
#-[E] ESRY_Header STRIMNG
-—[m| Element Lengths
- Messages
- B EDAtoSiebel
- Types
EALImM| Bal Element alid Values 57 Products-MQSI

 EhoaeT

F

E 1

F

)

meriva Through Selwol

MQSI: Control Center

kA MQ5eries Integrator Control Center - EAI R3.xml

File Edit Yiew Message Flow Types Help E
LT LR

Message Sets Message Flows |Assignments | Tnpnlngyl Topics | Suhscriptions | Operations | Log |

IDesigner Dehuggerl

e

*

Definition of Message Sets
Definition of Message Flows
Assignments

Definition of the Topology
Definition of topics
Management of subscriptions
Operations

Log

Y

*

Y

*

Y

*

e

*

e

*

e

*

e

*

EAI Implementation Workshop Part 2—May 14, 2002 58 Products-MQSI

i\ F EDERAL
STUDENT AID

olp Piet Anveriva Through 5

MQSI: Message Set

Message Definition - Notes

The definition of message requires that the individual
components of a message be defined and then included within
other components. A message is made up of the following:

¢ Elements...also commonly referred to as fields.
= Elements may have associated lengths

= Elements may have associated valid values. These may be a range of values or
several instances of different valid values to make up an enumeration list.

» Each element has an associated type. This may be a simple type such as STRING
or INTEGER or a compound type made up of other elements. Thus it is possible to
construct arbitrarily nested elements (and, therefore, messages) composed of
multiple compound types.

¢ Messages
Messages are made up of a set of elements in a specific order.

Individual messages are then grouped together in a Message
Set. The Message Set is the smallest 'unit’ that is made available
to a broker.

EAIl Implementation Workshop Part 2—May 14, 2002 59

Products-MQSI

B FEDERAL
TUDENT AID

MQSI: MRM

MQSI Message Repository Manager (MRM)

» Holds logical message format definitions
- Definitions are grouped into message sets
—Messages in a set share common structures and elements
» Contains mapping rules:.
= Mappings to XML and other message formats
» GUI to create and manage levels of message set
— Project Management/Version control functions
» Extractors to produce
= Dictionary file for Message Service Runtime
-DTD
- Message set documentation
» |Importers for C/Cobol structures

EAI Implementation Workshop Part 2—May 14, 2002 60 Products-MQSI

FEDERAL
STUDENT AID

Wi Hulp Pt Amverica Through School

MQSI:Msg Flow tab

kA M05eries Integrator Control Center - EAI R3.xml !

File E% Wiewe Message Flow Definition Help

i |
[@

O =8 G

=181]

Message Setg Message Flows]Assignmems 1 Tnpnlugy] Topics] Subscriptions] Operations 1 Log]

Diesigher DebuggerJ

T | Message FlowTy.. | O

N | COD_FMS_Errar_Handling_¥1.1 |

Message Flow Cefinition

O

44 DLORIG

-.4% DLDISBERROR

43 DLDISE

--[B2 Datallpdate

-2 Datalnsen

- DataDelete

- & Datahase

.4 CPS

- By Compute

4% COD_FMS_Vendar_y1.1
4§ COD_FMS_Vendar_5775
4% COD_FMS_Vendar_2247
4§ COD_FMS_Vendor

4§ COD_FMS_Response_v1.1
4% COD_FMS_Response_5775
4§ COD_FMS_Responge_2247
4§ COD_FMS_Response

- COD_FMS_LIABILITIES Ok
4% COD_FMS_LIABILITIES_DATA
4% COD_FMS_FinNanfin_y1.1
.48 COD_FME_FinMonfin_&775
<% COD_FMS_FinMonfin_2247
4§ COD_FMS_FinMonfin
400 FMS_Error_Handling 1.1

R T T et TR &

EAIl Implementation Workshop Part 2—May 14, 2002

=

e Bl —

COD_Errar_Handling_in - FlowCrder

—537

Frocess Errar Messane BD

TS2.FMS.NORESPOMSE.FLUT

61

.

Log Errars

Products-MQSI

a FEDERAL
N STUDENT AILD

Wi Halp Piet Amveriva Through Sclod

MQSI:Assignments tab

Series Integrator Control Center - EAT R3.xml . JE|
File Edit “iew Dormain Hierarchy Help

eI =)]' B @ $J|

Message Sets] Message Flows ASsidnments]Tnpnlngv] Topics] Subscriptions] Ciperations] Log]

b | | Do | O we | | Assignable R.. | O || »4 ! | Domain Topalogy |
_];]Elrnkers | Message Sets
- EAITT F-[gal Message Flows ¥ ECH_FMS_LIABILITIES |
@ SFADEWDT =] ECE_FMS |
-5 EAID
- EAII2 43 COD_FMS_Finkonfin_2247 €3 COD_FMS_Response_2247 <8 COD_FMS_Vendor_ 2247
@ EAlA1 <43 FMS_COD_FinMonfin_2247 <& FMS_COD_Response_2247
-5 BAII B COD_FMS |
=5] default
B cob_Fms_v1 B FMS_UNPAID
=P EATI
=5] default
£ SFADEVD1
4% COD_FMS_Vendaor <8 COD_FMS_FinMonfin <@ COD_FMS_Respaonse
i _Finklanfin i _Response
4% FMS_COD_FinMaonfin 4§ FME_COD_R
5] COD_FMS |
43 ECB_FMS_LIABILITIES |
(=] ECB_FMS |
default
B Fms_urnPAID B coD_FME_W1
B EAID
EAIl Implementation Workshop Part 2—May 14, 2002 62

Products-MQSI

FEDERAL
STUDENT AID

W iHulp Pk Arverica Through School M QS | : O pe rati O n S
:i MOSeries Integrator Control Center - EAT R3.xml :

= I |
[& Hyo &)
J J S

Message Sets | Message Flows | Assignments | Topalagy | Topics | Subscriptions Operations | Lag |

e | | Dorain Higrarchy | O || w4 | | Dormain Topology |

¢ Brokers

-+ EAIIT 4% COD_FMS_FinMonfin_v1.1 g 4% COD_FMS_Response_v1.1 E 4% COD_FMS_vendor_%1.1 g
R EAIAL 43 FMS_COD_FinMonfin_v1.1 T < FMS_COD_Response_v1.1 ¥

£ EAIZ &l coD_Fms ¥ |
-5 EAID

-4 SFADEY1 @ DLos_FHNOTE B ¢ DLOS_LOWER_RESPONSE T €} DLOS_LOWEB_REQUEST T
G145 EAIT1 @ DLOS_ENDORSER & 4§ DLOS_BORROWER_RESPONSE T <@ DLOS_BORROWER_REQUEST T§

oDLOS ¥ |
5] default i

B oLos_nry B EEEEREE

P Ea TR

43 EAl_DI_LOGGER T
=] EALDI_LOGGER

@ LAUREN_coD T |
default TE |

43 COD_FMS_Responzse_5775 g 43 COD_FMS_‘Vendaor_5775 % 43 FMS_COD_FinMonfin_5775 #
43 FMS_COD_Response_5775 ¥ 4§ COD_FMS_FinMonfin_5775 1§

= coD_Fms % |
@ DLos_PNOTE T 4 DLOS_LOWER_RESFONSE T§ 43 DLOS_LOWER_REQUEST T§
@ oLos_EnDoRSER B <@ DLOS_BORROWER_RESPONSE T <8 DLOS_BORROWER_REQUEST T
DLOS % |

EAI Implementation Workshop Part 2—May 14, 2002 63 Products-MQSI

TUDENT AID

Wi Hadp Piet America Through =

MQSI: XML

XML and MQSeries Integrator
@ |

m IXE—QSI V2 provides XML message broking . it
»Change contents of an XML message %U BT] o S ﬁ

»Transform from one XML message format to another
» Transform between XML and non-XML formats
»Create new XML messages

= Filter and Route XML messsage based on their content
» Allow Pub/Sub Subscriptions against XML content
»Augment XML messages with data from a database
»Update database with data from an XML message

= MQSI| V2 Message Repository support
—Messages can be modelled and checked at runtime

= MQSI V2 uses XML internally
= Control Center/Runtime communication

EAI Implementation Workshop Part 2—May 14, 2002 64 Products-MQSI

B FEDERAL
| STUDENT AID

MQSI: Deploy

Message Format Service - Deployment

MQSI V2 Message
broker

Excculion
Engine

Message o]

EAI Implementation Workshop Part 2—May 14, 2002 65 Products-MQSI

T

2 FEDERAL
STUDENT AID

MQSI: Publish/Subscribe

Publish/Subscribe - Publications, Subscriptions and Filters

= -

- -
publisher subscriber
(DO ~subscribe O O
broker
Subscriber

Publisher

e Subscriber

S

Body . value
> limit

Subscriber

EAI Implementation Workshop Part 2—May 14, 2002 66 Products-MQSI

W FEDERAL
§ STUDENT AID

MQSI: Pub/Sub

MQSI supports 2 application models:
and

Point-to-point applications exchange info with known partners.
Each app is aware of the applications to which it is logically
connected.

Publish/Subscribe apps are not tied to particular partners; they
use msgs that have more flexible delivery requirements in
terms of their origins and destinations. Msgs are published
about a particular topic, rather than to a particular recipient.
Msgs are available at any time, for any interested receiver
without it being aware of the sender. This application
architecture is more dynamic and anonymous than point-to-
point messaging.

EAI Implementation Workshop Part 2—May 14, 2002 67 Products-MQSI

B FEDERAL
B STUDENT AID

Data Integrator: Overview

Data Integrator

Provides the means to exchange
Information between dissimilar

Networks
Operating systems

Databases

Applications

EAI Implementation Workshop Part 2—May 14, 2002 68 Products-Data Integrator

2 FEDERAL
§ STUDENT AID

e Data Integrator: Flow

Data Integrator: Flow

Rieques! Processing Sand Processing Ricelve Processing
Tranaactian B re-arocssn Pra-iks IT- Prefisl0
Intesfaces
Conmand Lins
Wag ImaTace
Edrrhul 5 9
ISPF LY (a7}] L
WAL
o Fre FTE ' FTF
+ Mahager Sender Recaivar

6
Suvie 11 T 10

TrarescHon paet-precs e Peat-Fik 0 FomFida D

The following major components compose e-Adapter:

. g::[:g:-ﬁdapter Interfaces
+ Te=Adapter Manager
+ e-Adapter Sender

+ e-Adapter Receiver
« e-Adapter Status

EAI Implementation Workshop Part 2—May 14, 2002 69 Products-Data Integrator

FEDERAL
§ STUDENT ALD DI

Wi Halp Pt Arverive Through School

. Flow

1. A request is submitted to e-Adapter by one of the supported interfaces. The
request is passed to the e-Adapter Manager's input queue.

2. After the e-Adapter Manager accepts the request, but before processing it,
the e-Adapter Manager transaction preprocess exit can be called.

3. The e-Adapter Manager submits the request to the e-Adapter Sender via the
e-Adapter Sender's input queue.

4. After the e-Adapter Sender accepts the request, but before processing the
data being transferred, the e-Adapter Sender can call the sender pre-process
exit to perform application-specific processing.

5. The e-Adapter Sender reads and transforms the data into MQSeries
MEssages.

6. The messages that make up the data are submitted to the e-Adapter Receiver
via the e-Adapter Receiver's input queue and data queues.

7. After processing the data, the e-Adapter Sender can call the post-process
exit to perform application-specific processing.

8. After the e-Adapter Receiver accepts the data, but before processing it, the
e-Adapter Receiver can call the receiver pre-process exit to perform
application-specific processing.

9. The e-Adapter Receiver retrieves the data messages and processes the data
accordingly.

10. After the e-Adapter Receiver processes the data, it can call the e-Adapter

Receiver post-process exit to perform application-specific processing.

11. The e-Adapter Manager receives all responses and ends the logical unit of
work (LUW). Before ending the LUW, the e-Adapter Manager can call the
manager post-processing exit.

12. An optional response is delivered to the appropriate end-user interface
indicating that the data transfer has completed.

EAI Implementation Workshop Part 2—May 14, 2002 70 Products-Data Integrator

FEDERAL
STUDENT AID

Wi Hulp Piek Amverics Through Schoo!

DI: Components

QP'I'E- and Fost-Pro::esaes)

Lipaw
ik
5
=
=2 = g ”
% g = =3 Manager Sender Receiver
=

HSeries CummercEQuest Data Intggratur

Operating Systems
| TCRAP, SHA, MoetBios, IPE/SPX

EAI Implementation Workshop Part 2—May 14, 2002 71

Products-Data Integrator

B FEDERAL
§ STUDENT AID

DI: e-Adapter Mgr

e-Adapter Manager

» Manages status of all transfers
e reads its input queue

e creates log entries

 submits stat msgs to queues

L)

L)

¢ Starts and stops all transfer units of work

s Correlates all operational replies and reports final status
of the transaction (not to be confused with status msgs)
* Request completed successfully
* Request falled
* Request expired
* Reguest canceled

EAI Implementation Workshop Part 2—May 14, 2002 72 Products-Data Integrator

B FEDERAL
STUDENT AID

DI: e-Adapter Sdr

Sender

* Transforms the data into M QSeries messages
e reads its input queue
e creates log entries
 submits status messages
¢ The sender is always where the source dataresides

¢ Updates the e-Adapter Manager with operational replies

EAI Implementation Workshop Part 2—May 14, 2002 73 Products-Data Integrator

B FEDERAL
§ STUDENT AID

DI e-Adapter Rcvr

Receiver
“* Recelvesincoming datafrom MQSeries.

e reads its input queue
e creates log entries
 submits status messages

“* Therecelver is aways the destination for the data

¢ Updates the e-Adapter Manager with operational replies

EAI Implementation Workshop Part 2—May 14, 2002 74 Products-Data Integrator

Do
*':"E EDERAL
§ STUDENT AID

DI: e-Adapter Status

Status

% Status messages are received by each of the e-Adapter
components and are not necessary for internal e-Adapter
processing

¢ Status messages provide areporting system that report on
current and past status of data-transfer requests

¢ Status messages are M QSeries messages destined for the
gueue or list of queues defined in the e-Adapter config file

EAI Implementation Workshop Part 2—May 14, 2002 75 Products-Data Integrator

B FEDERAL
STUDENT AID

DI: Exits

“*E-Adapter provides several exit points at strategic
locations during the data-transfer request.

% Must be developed in C

s User exits are invoked synchronously by the e-Adapter
components.

EAI Implementation Workshop Part 2—May 14, 2002 76 Products-Data Integrator

B FEDERAL
s TUDENT AID

DI: Pools

POOLS

“ e-Adapter Pools use logical queues made up of
muliple physical queues

% Pools allow
 Increased throughput
« Segregation of data-transfer traffic

 Overcome MQSeries gueue capacity
limitations

EAI Implementation Workshop Part 2—May 14, 2002 77 Products-Data Integrator

. STUDENT AILD
' W Hulp Pk Arvarica Through Schoal

DI: Available Exits

Exit # Executing E-Adapter Description
Node Component
Exit 3 ogm Magr Mgr preprocess exit. If specified, this is the 15t exit

executed in the data transfer

Exit 4 ogm Magr Mgr post-process. If specified, this is the last exit
executed in the data tranfer

Exit 5 sgm Sdr Sdr pre-process exit. Invoked before the e-Adptr Sdr
reads the source file

Exit 6 sgm Sdr Sdr post-process exit. Invoked after the source file’'s
contents have been read

Exit 7 dgm Rcv Rcvr pre-process exit. Invoked before the rcvr begins to
write the target file

Exit 8 dgm Rcv Rcvr post-process exit. Inovked after the target file has
been processed

Exit 9 sgm Sdr Invokes sdr connector exit

Exit 10 dgm Rcv Invokes rcvr connector exit

EAI Implementation Workshop Part 2—May 14, 2002 78 Products-Data Integrator

FEDERAL
| STUDENT AID

DI and FSA

+¢» Current uses and interfaces

EAI Implementation Workshop Part 2—May 14, 2002 79 Products-Data Integrator

QA FEDERAL
s TUDENT AID

DI. Subsystem

“ The e-Adapter subsystem provides the following
services

 Moves and accepts files among supported services

* Provides data compression if you require it

» Performs binary and ascii transfers

» Transfers files regardless of size, format, or destination

» Allows individual status tracking for any phase of the file
transfer at any node across the enterprise

EAI Implementation Workshop Part 2—May 14, 2002 80 Products-Data Integrator

@ F EDERAL

Bl O W Ielp Pt Awveriva Through School

B STUDENT AID Files are transferred from trading partners to COD through the

services offered by the EAI architecture.

Trading Partner

EAI BUS SERVER
Sun Server

COoD
0S/390 Server

EAI Implementation Workshop Part 2—May 14, 2002

81

Architecture-Release 1.0 & 2.0 Accomplishments

FEDERATL
STUDENT AID Individual transactions are transported and transformed, if

necessary, using the services provided by the EAI architecture.

LO Web Server EAI BUS SERVER COD
HP/UX Sun Server 0OS/390 Server
Request Msg Sent 1 | - - | |
To Java Adapter Request Msg Sent to EAIl Bus via MQSeries Transformed Request Msg Sent to COD via MQSeries

START MQSI Supplements

Message by adding
TSYS Headers/
Trailers

LO Web Java Renly to OutD
Application Adapter Queue

A
* 1 Transformed Reply Msg sent to LO Web

rver via M ri - -
Reply Message Server via MQSeries J Reply Msg sent to EAl Bus via MQSeries |
Returned to LO Web
Application J

MQSI Transforms
Message by
Stripping TSYS
Headers/Trailers

EAI Implementation Workshop Part 2—May 14, 2002 82 Architecture-Release 1.0 & 2.0 Accomplishments

a8 FEDTERAL
§ STUDENT AID

The PEPS EAI Interface Minimizes the Impact on PEPS

Resources

» EAI Requires a Directory and
Workspace on PEPS Server

» EAI Requires a Copy of Daily PEPS

PEPS Server File be placed in the EAI directory
PEPS whenever an new file is produced
Application _
» Data Integrator and MQSeries run on
[the PEPS Server to send the file to the
é EAI Server
File Transfer | ___— Other . .
PEPS PEPS Daily Protocol je=— — FSA » Existing FTP processes continue as
Database File (FTP) [——, Systems they are now.
N~n_
» Transfer process happens once a day.
EAI Directory =) S
y
3
Data Data Data
PEPS Data Integrator Integrator PEPS Data Integrator
! 1 |_» COD
MQSeries » MQSeries MQSeries <
T~ ecB
EAI Implementation Workshop Part 2—May 14, 2002 83 Architecture-Release 1.0 & 2.0 Accomplishments

STUD

AFEDERAL
ENT AILD

The FMS - EAI Interface Approach Utilizes a Transition Table to
Map Feeder System Data Elements Into FMS

Feeder Systems

Open Interface

Transition Table Table

Trans A B C

PY x| x| -

N X1-1X Lookups,

> x| -1]x Edits, & Data (Eggefeé;'
PY X | x| - Validation g
AB x | x | x
FMS
EAI Transition Table Data Loading Ol Table EMS Module

*Provide data
according to
own format

«Different
systems may
provide different
data elements

*Routes data to
appropriate
Transition Table
and Column

«Converts data
formats as
necessary

*Validates basic
data formats

»Contains columns for all
possible data elements

*Source system is
implied by the data

EAIl Implementation Workshop Part 2—May 14, 2002

*Performs feeder specific
processing

*Performs table lookups

*Performs data validation
and edits

*Presents input
data for Module
processing

*One Open
Interface Table
for each FMS
Module

*One FMS Module
each for General
Ledger, Accounts
Payable, Accounts
Receivable

84 Architecture-Release 1.0 & 2.0 Accomplishments

reperAL CODIs composed of multiple interfaces with
e

R — FSA’s trading partners.

. Abbreviated Applicant File
Irgagmg < Central
erver ituti i i
Pell Institution Universe File Processing
MPN and Pell Recipient File > System (CPS)
Endorser Data
y
Postsecondary
PLUS MPN Record a4 < Daily Participant Feed Education
PLUS Endorser Record > Participant
LOWEB S System (PEPS)
Server Borrower Validation & MPN 1D Number
Request/Response DLSS Batch Feed >
LO Web & DLOS Credit Checks ;
< > DLSS Batch Response Direct Loan
< Servicing
. Disbursement Confirmations (RDC's | System (DLSS)
DLOS Credit
hecks
) Common Financial Requests
< P-Note Link Request Origination &]]
' D Financial Requests >
Date Change Payment Trigger (COD)
Financial Responses
DLOS Batch . .
Unsolicited MPN and Link Response . .
P Financial Responses
MPN Status Change > ESA Einancial
School Information Management
. System (FMS)
< School Information Responses
Common Record Schools Interface File >
< Common Record Schools Interface File Reconciliation and Balancing Information
Student Aid Legacy Record Schools Interface File < Reconciliation and Balancing Responses
Internet >
Gateway < Legacy Record Schools Interface File
(SAIG) o) Pell Recipient Information > National
School Destination Information Feed > Student Loan
COD to Schools/SAIG Reports > Pell Recipient Data Errors Data System
¢ (NSLDS)

Legend

|:| Trading Partners

<+—> |nterfaces 85

